skip to main content


Search for: All records

Creators/Authors contains: "Kirk, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Intermittent headwater streams are highly vulnerable to environmental disturbances, but effective management of these water resources requires first understanding the mechanisms that generate streamflow. This study examined mechanisms governing streamflow generation in merokarst terrains, a type of carbonate terrain that covers much of the central United States yet has received relatively little attention in hydrological studies. We used high-frequency sampling of precipitation, stream water, and groundwater during summer 2021 to quantify the contributions to streamflow from different water sources and characterize their short-term dynamics in a 1.2 km 2 merokarst catchment at the Konza Prairie Biological Station (Kansas, USA). Mixing calculations using stable water isotopes and dissolved ions indicate that streamflow is overwhelmingly contributed by groundwater discharge from thin (1–2 m) limestone aquifers, even during wet periods, when soil water and surface runoff are generally expected to be more important. Relationships between hydraulic heads in the aquifers and their contributions to streamflow differed early in the study period compared to later, after a major storm occurred, suggesting there is a critical threshold of groundwater storage that the bedrock needs to attain before fully connecting to the stream. Furthermore, contributions from each limestone unit varied during the study period in response to differences in their hydrogeological properties and/or their stratigraphic position, which in turn impacted both the length of streamflow and its composition. Taken together, we interpret that the subsurface storage threshold and variation in aquifer properties are major controllers of flow intermittency in merokarst headwater catchments. 
    more » « less
  4. Abstract

    Non‐perennial streams, which lack year‐round flow, are widespread globally. Identifying the sources of water that sustain flow in non‐perennial streams is necessary to understand their potential impacts on downstream water resources, and guide water policy and management. Here, we used water isotopes (δ18O and δ2H) and two different modeling approaches to investigate the spatiotemporal dynamics of young water fractions (Fyw) in a non‐perennial stream network at Konza Prairie (KS, USA) during the 2021 summer dry‐down season, as well as over several years with varying hydrometeorological conditions. Using a Bayesian model, we found a substantial amount of young water (Fyw: 39.1–62.6%) sustained flows in the headwaters and at the catchment outlet during the 2021 water year, while 2015–2022 young water contributions estimated using sinusoidal models indicated smallerFywamounts (15.3% ± 5.7). Both modeling approaches indicate young water releases are highly sensitive to hydrological conditions, with stream water shifting to older sources as the network dries. The shift in water age suggests a shift away from rapid fracture flow toward slower matrix flow that creates a sustained but localized surface water presence during late summer and is reflected in the annual dynamics of water age at the catchment outlet. The substantial proportion of young water highlights the vulnerability of non‐perennial streams to short‐term hydroclimatic change, while the late summer shift to older water reveals a sensitivity to longer‐term changes in groundwater dynamics. Combined, this suggests that local changes may propagate through non‐perennial stream networks to influence downstream water availability and quality.

     
    more » « less
  5. null (Ed.)
  6. Abstract The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 $$\hbox {ab}^{-1}$$ ab - 1 of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential. 
    more » « less
  7. null (Ed.)